FUNCTIONING OF THE EYE: Focusing the eye and Seeing distant objects
Home Eyes EARS MOUTH NOSE SKIN

Eyes Introduction Human Eye Protective Structures Functioning Eye Comparative Anatomy Eye Diseases Eye Bank

Vision THE MECHANICS OF VISION VISUAL ACUITY VISION DISORDERS Nearsightedness Farsightedness Astigmatism
Blindness DEFINING BLINDNESS Color Blindness MAJOR CAUSES OF BLINDNESS
Cataract Trachoma Conjunctivitis Glaucoma Glaucoma - CAUSE Glaucoma - SYMPTOMS AND DIAGNOSIS Glaucoma - TREATMENT ACUTE GLAUCOMA Macular Degeneration
EDUCATION OF THE VISUALLY IMPAIRED TOOLS FOR VISUAL REHABILITATION Ophthalmology LOW VISION
Eyeglasses CONTACT LENSES PROTECTIVE AND HISTORY EYEGLASSES
Circulatory system Respiratory system Endocrine system Digestive system
RESPIRATORY DISEASES
LIVER LIVER DISEASES FUNCTIONS OF THE LIVER STRUCTURE OF THE LIVER



FUNCTIONING OF THE EYE



FUNCTIONING OF THE EYE: Focusing the eye and Seeing distant objects

 Light rays entering the eye are refracted, or bent, when they pass through the lens. Normal vision requires that the rays focus on the retina. If the eyeball is too long, an accurately focused image falls short of the retina. This is called myopia, or nearsightedness. A nearsighted person sees distant objects unclearly. Farsighted focus, or hyperopia, results when the eyeball is too short. In this case, an accurately focused image would fall behind the retina. These conditions can also occur if the muscles of the eye are unable to alter the shape of the lens to focus light rays accurately.

 In general the eyes of all animals resemble simple cameras in that the lens of the eye forms an inverted image of objects in front of it on the sensitive retina, which corresponds to the film in a camera.
 Focusing the eye, as mentioned above, is accomplished by a flattening or thickening (rounding) of the lens. The process is known as accommodation. In the normal eye accommodation is not necessary for seeing distant objects.

 The lens, when flattened by the suspensory ligament, brings such objects to focus on the retina. For nearer objects the lens is increasingly rounded by ciliary muscle contraction, which relaxes the suspensory ligament. A young child can see clearly at a distance as close as 6.3 cm (2.5 in), but with increasing age the lens gradually hardens, so that the limits of close seeing are approximately 15 cm (about 6 in) at the age of 30 and 40 cm (16 in) at the age of 50. In the later years of life most people lose the ability to accommodate their eyes to distances within reading or close working range. This condition, known as presbyopia, can be corrected by the use of special convex lenses for the near range.

 Structural differences in the size of the eye cause the defects of hyperopia, or farsightedness, and myopia, or nearsightedness. See Eyeglasses; Vision.

 As mentioned above, the eye sees with greatest clarity only in the region of the fovea; due to the neural structure of the retina. The cone-shaped cells of the retina are individually connected to other nerve fibers, so that stimuli to each individual cell are reproduced and, as a result, fine details can be distinguished. The rodshaped cells, on the other hand, are connected in groups so that they respond to stimuli over a general area. The rods, therefore, respond to small total light stimuli, but do not have the ability to separate small details of the visual image. The result of these differences in structure is that the visual field of the eye is composed of a small central area of great sharpness surrounded by an area of lesser sharpness. In the latter area, however, the sensitivity of the eye to light is great. As a result, dim objects can be seen at night on the peripheral part of the retina when they are invisible to the central part.

 The mechanism of seeing at night involves the sensitization of the rod cells by means of a pigment, called visual purple or rhodopsin, that is formed within the cells. Vitamin A is necessary for the production of visual purple; a deficiency of this vitamin leads to night blindness. Visual purple is bleached by the action of light and must be reformed by the rod cells under conditions of darkness. Hence a person who steps from sunlight into a darkened room cannot see until the pigment begins to form. When the pigment has formed and the eyes are sensitive to low levels of illumination, the eyes are said to be dark-adapted.

Eye Movement: FUNCTIONING OF THE EYE

 Eye movement is controlled by six muscles that are directly attached to the eyeball. The four rectus muscles form a relatively straight line from their points of origin, while the two oblique muscles approach the surface of the eye at an angle. All the muscles combine to keep the eyeball in nearly constant motion in order to maximize human vision, which is capable of focusing on about 100,000 distinct points in the visual field. These muscles also enable both eyes to focus on the same point simultaneously, thereby creating effective depth perception.

 A brownish pigment present in the outer layer of the retina serves to protect the cone cells of the retina from overexposure to light. If bright light strikes the retina, granules of this brown pigment migrate to the spaces around the cone cells, sheathing and screening them from the light. This action, called light adaptation, has the opposite effect to that of dark adaptation.

 Subjectively, a person is not conscious that the visual field consists of a central zone of sharpness surrounded by an area of increasing fuzziness. The reason is that the eyes are constantly moving, bringing first one part of the visual field and then another to the foveal region as the attention is shifted from one object to another. These motions are accomplished by six muscles that move the eyeball upward, downward, to the left, to the right, and obliquely. The motions of the eye muscles are extremely precise; the estimation has been made that the eyes can be moved to focus on no less than 100,000 distinct points in the visual field. The muscles of the two eyes, working together, also serve the important function of converging the eyes on any point being observed, so that the images of the two eyes coincide. When convergence is nonexistent or faulty, double vision results. The movement of the eyes and fusion of the images also play a part in the visual estimation of size and distance.



auuuu.org ©2016.